Anaerobic Digestion: Hope or Hype?

Renewables for Rural Prosperity, April 9, 2002

Jeff Cole

Biogas Program Manager Portland General Electric

Agenda

- Portland General Electric and Biogas
- Digester Basics
- Opportunities, Challenges, Risks
- Project Portfolio
- Lessons Learned
- (My) Conclusions: hope? hype?
- Questions/Discussion

PGE and Biogas

- Portland General Electric
- Why biogas
- How we started
- What we've been doing

Digester Basics

- What to feed
 - Be careful about bedding materials
 - Minimize and manage debris
 - Opportunity for supplemental feedstock (e.g. fatty acids)
- How much to feed
 - Concentration of digestible solids
 - Steady loading

Digester Basics

- Retention Time
- Temperature
 - Mesophilic: 95-100°F
 - Thermophilic: 130-135°F
 - Technical challenge raising the temperature of incoming materials while balancing availability of waste heat

Digester Benefits

- Utilities: "continuous" supply of renewable energy
- Dairies
 - Reduce manure solids (volatile solids to biogas)
 - Nutrient management:
 - digesters do not remove N, P, or K
 - N is mineralized
 - Increased flexibility regarding land application
 - Odor reduction

Opportunities, Challenges, Risks

- Opportunities (from a convergence of)
 - Increasing environmental constraints on producers
 - Developing markets for organic fiber
 - Niche opportunities for locally-generated green power
 - Consumer interest in green power potential for premium pricing

Opportunities, Challenges, Risks

Challenges

- Developing projects as a third-party with no need for capital contributions from dairies
- Selling enough electricity and fiber to repay investment over a reasonable time horizon
- Providing significant environmental benefits to host dairies (e.g. a "systems" approach toward reductions in N,P,K)
- Uncertainties regarding energy prices (how much will utilities, including our own, pay?)

Opportunities, Challenges, Risks

- Risks
 - Spotty operating history of US farm-based digesters from shortages of:
 - Capital
 - Broad-based, integrated, field-based research
 - Good design documentation and as-builts
 - Long-term O&M support
 - Recent volatility of energy markets

PGE Project Portfolio

- Cal-Gon Farms, Salem
 - High solids (12%)
 - 1 cast-in-place concrete tank
 - Capacity: at 500 cows, 12-day retention time
 - Mesophilic or thermophilic operating capabilities
 - 100 kW electrical capacity
 - Screw-type separator
 - Construction completed last December
 - Currently completing start-up (electricity to the grid on March 7th)

PGE Project Portfolio

- ThreeMile Canyon Dairies, Boardman
 - Medium solids (6-8%) (thickened from flushed manure slurry of 2%)
 - 2-steel tanks
 - Capacity: 20,000 cows, 12-day retention time
 - Thermophilic operating temperature
 - 4,000 kW generating capacity
 - Screen separators
 - Begin construction Q2'02
 - Commercial operation prior to end of 2003

- Lots of information
 - Everybody has an opinion
 - There are lots of companies ready to sell
 - Some sales claims seem too good to be true
- Need to effectively filter all of this information

- Digesters must be integrated into a comprehensive manure management process
- Significant research and documentation is still required to demonstrate digester benefits
 - "Benefits" rather than "performance"
 - Specific contributions within a process

- Difficult to find the right combination of up-to-date technical information and operating experience
 - Even though the basic technology is pretty well understood
 - Digester research appears to be on the rise, but tends to focus upon sub-systems or regional solutions
 - Not much research focused upon the application side: optimizing gas production; increasing the market value of digested fiber; or application of digester solids and liquids

- Difficult to find the right combination of up-to-date technical information and operating experience
 - Value in talking to multiple developers, engineers, vendors, researchers, producers (but this increases transaction costs).
 - Flexible technical solutions required.
 - Standardization to reduce costs (and we need to reduce costs!)

- Larger projects (>1,000 cows) are easier
 - Better fit with more "conventional" technologies
 - Project economics are more robust
 - We continue to search for solutions for smaller dairies

- Low interest loans, tax credits, and subsidy programs critical to project development
 - Oregon projects can benefit from
 - Business Energy Tax Credit (BETC)
 35% over five years
 - Small Energy Loan Program (SELP)
 - A three-year federal tax credit should be in place soon

What's Next (for PGE)

Balance

- interest in additional projects
- while gaining significant operating experience

Develop

- A select group of projects to advance our understanding of critical issues
- Partnerships/alliances
- A way to encourage/support/ participate in critical research